wfphpnlp / naivebayesclassifier
用于印度尼西亚文本分类的PHP库,采用朴素贝叶斯分类器(NBC)方法。
1.2.0
2020-07-08 14:08 UTC
Requires (Dev)
- phpunit/phpunit: ^5.0
This package is auto-updated.
Last update: 2024-09-08 23:16:56 UTC
README
PHP库,用于将印度尼西亚文本分类为正面、负面和中性,采用朴素贝叶斯分类器(Naive Bayes Classifier)方法。
安装方式
通过Composer
composer require wfphpnlp/naivebayesclassifier
如果您还不了解如何使用Composer,请阅读 Composer入门。
克隆GitHub
git clone https://github.com/WillyFaq/Naive-Bayes-Classifier.git
使用方法
如果使用composer,请通过 vendor/autoload.php
初始化项目
require_once __DIR__ . '/vendor/autoload.php'; use wfphpnlp\NaiveBayes;
以下是完整使用示例。
<?php // include composer autoloader require_once __DIR__ . '/vendor/autoload.php'; use wfphpnlp\NaiveBayes; $data = [ [ 'text' => 'produknya keren kualitasnya bagus awet dan tahan lama', 'class' => 'positif' ], [ 'text' => 'barangnya bagus mudah digunakan', 'class' => 'positif' ], [ 'text' => 'barangnya cepat rusak kualitas buruk, tidak bisa digunakan sama sekali', 'class' => 'negatif' ], [ 'text' => 'produknya jelek tidak sesuai harapan', 'class' => 'negatif' ], [ 'text' => 'produk sudah cukup baik, cara penggunaanya juga cukup mudah', 'class' => 'netral' ], ]; $nb = new NaiveBayes(); // mendefinisikan class target sesuai dengan yang ada pada data training. $nb->setClass(['positif', 'negatif', 'netral']); // proses training $nb->training($data); // pengujian $result = $nb->predict('produknya buruk tidak keren'); // output "negatif" print_r($result); /* //hasil output Array ( [positif] => Array ( [computed] => Array ( [0] => 0.038461538461538 [1] => 0.019230769230769 [2] => 0.019230769230769 [3] => 0.038461538461538 ) [result] => 0.023076923076923 ) [negatif] => Array ( [computed] => Array ( [0] => 0.037037037037037 [1] => 0.037037037037037 [2] => 0.055555555555556 [3] => 0.018518518518519 ) [result] => 0.02962962962963 ) [netral] => Array ( [computed] => Array ( [0] => 0.021739130434783 [1] => 0.021739130434783 [2] => 0.021739130434783 [3] => 0.021739130434783 ) [result] => 0.017391304347826 ) [hasil] => negatif ) */