necromant2005 / bigml-php-sdk
BigML PHP SDK
1.5.1
2014-11-03 12:46 UTC
Requires
- php: >=5.3.0
- zendframework/zend-http: 2.*
README
简介
BigML PHP SDK用于访问bigml.com API
特性/目标
- 从PHP简单访问API
- 处理数据转换json => array, array=>json和错误处理
- 实现资源:源、数据集、模型、预测、评估
安装
主要设置
使用composer
- 将以下内容添加到您的composer.json中
"require": { "necromant2005/bigml-php-sdk": "1.*", }
- 现在运行命令以让composer下载BigMl PHP SDK
$ php composer.phar update
用法
使用API版本"andromeda"创建资源
use BigMl\Client\BigMl; $source = BigMl::factory('source', array( 'username' => 'alfred', 'api_key' => '79138a622755a2383660347f895444b1eb927730', ));
以特定API版本在开发模式下创建资源
use BigMl\Client\BigMl; $source = BigMl::factory('source', array( 'username' => 'alfred', 'api_key' => '79138a622755a2383660347f895444b1eb927730', 'access_point' => 'https://bigml.io/dev/', 'version' => 'andromeda', ));
使用自定义预测接入点访问特定的BigML AWS预测实例
use BigMl\Client\BigMl; $source = BigMl::factory('source', array( 'username' => 'alfred', 'api_key' => '79138a622755a2383660347f895444b1eb927730', 'access_point' => 'https://bigml.io/dev/', 'access_point_prediction' => 'https://prediction.dev.bigml.io/', 'version' => 'andromeda', ));
基本用法
通过工厂创建资源
use BigMl\Client\BigMl; BigMl::factory('source', array( ... )); // source BigMl::factory('dataset', array( ... )); // dataset BigMl::factory('model', array( ... )); // model BigMl::factory('prediction', array( ... )); // prediction BigMl::factory('evaluation', array( ... )); // evaluation
资源用法
创建源数据
use BigMl\Client\BigMl; $source = BigMl::factory('source', array( ... )); $source->create(array('data' => array( 'a', 'b', 'c', 1, 2, 3, 4, 5, 7 )));
创建远程源
use BigMl\Client\BigMl; $source = BigMl::factory('source', array( ... )); $source->create(array('remote' => 's3://bigml-public/csv/iris.csv'));
获取源信息
use BigMl\Client\BigMl; $source = BigMl::factory('source', array( ... )); $source->retrieve('source/4f510d2003ce895676000069');
获取信息,直到处理完成,每10秒检查一次状态
use BigMl\Client\BigMl; $source = BigMl::factory('source', array( ... )); $source->wait('source/4f510d2003ce895676000069', 10);
查找名为'iris'的源
use BigMl\Client\BigMl; $source = BigMl::factory('source', array( ... )); $source->retrieve('source', array( 'name' => 'iris' ));
重命名源
use BigMl\Client\BigMl; $source = BigMl::factory('source', array( ... )); $source->update('source/4f510d2003ce895676000069', array( 'name' => 'iris-new' ));
删除源
use BigMl\Client\BigMl; $source = BigMl::factory('source', array( ... )); $source->delete('source/4f510d2003ce895676000069');
预测用法
进行预测
use BigMl\Client\BigMl; $service = BigMl::factory('prediction', array( ... )); $service->create(array( 'model' => 'model/57510d2003ce895676000069', 'input_data' => array( '000000' => 'value1', '000001' => 'valu2', ), 'name' => 'my-prediction', ));