ivanapostic / php-api-client
PHP 客户端,方便使用 Recombee 推荐API。
v1.3.2
2017-03-03 14:01 UTC
Requires
- php: >=5.4.0
- rmccue/requests: ^1.7.0
Requires (Dev)
README
一个PHP客户端,方便使用Recombee推荐API。
如果您还没有Recombee账户,您可以在这里创建一个免费账户。
API文档可以在docs.recombee.com找到。
安装
最佳安装方式是通过依赖管理器Composer
composer require ivanapostic/php-api-client
或
{
"require": {
"ivanapostic/php-api-client": "^1.3.2"
}
}
示例
基本示例
use Recombee\RecommApi\Client; use Recombee\RecommApi\Requests as Reqs; use Recombee\RecommApi\Exceptions as Ex; $client = new Client('client-test', 'jGGQ6ZKa8rQ1zTAyxTc0EMn55YPF7FJLUtaMLhbsGxmvwxgTwXYqmUk5xVZFw98L'); const NUM = 100; const PROBABILITY_PURCHASED = 0.1; try { // Generate some random purchases of items by users $purchase_requests = array(); for($i=0; $i < NUM; $i++) { for($j=0; $j < NUM; $j++) { if(mt_rand() / mt_getrandmax() < PROBABILITY_PURCHASED) { $request = new Reqs\AddPurchase("user-{$i}", "item-{$j}", ['cascadeCreate' => true] // Use cascadeCreate to create the // yet non-existing users and items ); array_push($purchase_requests, $request); } } } echo "Send purchases\n"; $res = $client->send(new Reqs\Batch($purchase_requests)); //Use Batch for faster processing of larger data // Get 5 recommendations for user 'user-25' $recommended = $client->send(new Reqs\UserBasedRecommendation('user-25', 5)); echo 'Recommended items: ' . implode(',',$recommended) . "\n"; } catch(Ex\ApiException $e) { //use fallback }
使用属性值
use Recombee\RecommApi\Client; use Recombee\RecommApi\Requests as Reqs; use Recombee\RecommApi\Exceptions as Ex; const NUM = 100; const PROBABILITY_PURCHASED = 0.1; $client = new Client('client-test', 'jGGQ6ZKa8rQ1zTAyxTc0EMn55YPF7FJLUtaMLhbsGxmvwxgTwXYqmUk5xVZFw98L'); $client->send(new Reqs\ResetDatabase()); //Clear everything from the database /* We will use computers as items in this example Computers have three properties - price (floating point number) - number of processor cores (integer number) - description (string) */ // Add properties of items $client->send(new Reqs\AddItemProperty('price', 'double')); $client->send(new Reqs\AddItemProperty('num-cores', 'int')); $client->send(new Reqs\AddItemProperty('description', 'string')); $client->send(new Reqs\AddItemProperty('in_stock_from', 'timestamp')); # Prepare requests for setting a catalog of computers $requests = array(); for($i=0; $i<NUM; $i++) { $r = new Reqs\SetItemValues( "computer-{$i}", //itemId //values: [ 'price' => rand(15000, 25000), 'num-cores' => rand(1, 8), 'description' => 'Great computer', 'in_stock_from' => new DateTime('NOW') ], //optional parameters: ['cascadeCreate' => true] // Use cascadeCreate for creating item // with given itemId, if it doesn't exist] ); array_push($requests, $r); } // Send catalog to the recommender system $result = $client->send(new Reqs\Batch($requests)); var_dump($result); // Generate some random purchases of items by users $requests = array(); for($i=0; $i<NUM; $i++) for($j=0; $j<NUM; $j++) if(mt_rand() / mt_getrandmax() < PROBABILITY_PURCHASED) { $r = new Reqs\AddPurchase("user-{$i}", "computer-{$j}", ['cascadeCreate' => true]); array_push($requests, $r); } // Send purchases to the recommender system $client->send(new Reqs\Batch($requests)); // Get 5 items related to item computer-6. Personalize them for user-42, who is currently viewing that item. $recommended = $client->send(new Reqs\ItemBasedRecommendation('computer-6', 5, ['targetUserId' => 'user-42'])); echo 'Recommended items: ' . implode(',',$recommended) . "\n"; // Recommend only computers that have at least 3 cores $recommended = $client->send( new Reqs\ItemBasedRecommendation('computer-6', 5, ['targetUserId' => 'user-42', 'filter' => "'num-cores'>=3"]) ); echo 'Recommended items with at least 3 processor cores: ' . implode(',',$recommended) . "\n"; // Recommend only items that are more expensive then currently viewed item computer-6 (up-sell) $recommended = $client->send( new Reqs\ItemBasedRecommendation('computer-6', 5, ['targetUserId' => 'user-42', 'filter' => "'price' > context_item[\"price\"]"]) ); echo 'Recommended up-sell items: ' . implode(',',$recommended) . "\n"
异常处理
为了简洁,上述示例省略了异常处理。然而,在处理请求时可能会发生各种异常,例如由于添加已存在的项,提交不存在的用户的交互或因为超时而引起。
我们正在努力提供最快、最可靠的服务,但是生产级应用程序必须实现回退解决方案,因为错误总是可能发生的。例如,回退可能是显示当前类别的热门商品,或者完全不显示推荐。
示例
use Recombee\RecommApi\Client; use Recombee\RecommApi\Requests as Reqs; use Recombee\RecommApi\Exceptions as Ex; try { $recommended = $client->send( new Reqs\ItemBasedRecommendation('computer-6', 5, ['targetUserId' => 'user-42', 'filter' => "'price' > context_item[\"price\"]"]) ); } catch(Ex\ApiTimeoutException $e) { //Handle timeout => use fallback } catch(Ex\ResponseException $e) { //Handle errorneous request => use fallback } catch(Ex\ApiException $e) { //ApiException is parent of both ResponseException and ApiTimeoutException }