foremtehan/google-gemini-php

Google Gemini PHP for Laravel 是一个增强型的 PHP API 客户端,允许您与 Google Gemini AI API 交互

dev-main 2024-05-01 08:41 UTC

This package is auto-updated.

Last update: 2024-10-01 00:09:01 UTC


README

Google Gemini PHP for Laravel

Latest Version License

Gemini PHP for Laravel 是一个由社区维护的 PHP API 客户端,允许您与 Gemini AI API 交互。

有关更多信息,请查看 google-gemini-php/client 仓库。

目录

先决条件

为了完成此快速入门,请确保您的开发环境满足以下要求

设置

安装

首先,通过 Composer 软件包管理器安装 Gemini

composer require google-gemini-php/laravel

接下来,执行安装命令

php artisan gemini:install

这将为您项目创建一个 config/gemini.php 配置文件,您可以使用环境变量根据需要修改它。Gemini API 密钥的空白环境变量已附加到您的 .env 文件中。

GEMINI_API_KEY=

您还可以定义以下环境变量。

GEMINI_BASE_URL=
GEMINI_REQUEST_TIMEOUT=

设置您的 API 密钥

要使用 Gemini API,您需要一个 API 密钥。如果您还没有,请在 Google AI Studio 中创建一个密钥。

获取 API 密钥

使用方法

与 Gemini 的 API 交互

use Gemini\Laravel\Facades\Gemini;

$result = Gemini::geminiPro()->generateContent('Hello');

$result->text(); // Hello! How can I assist you today?

聊天资源

纯文本输入

给定输入消息从模型生成响应。如果输入仅包含文本,请使用 gemini-pro 模型。

$result = Gemini::geminiPro()->generateContent('Hello');

$result->text(); // Hello! How can I assist you today?

文本和图像输入

如果输入包含文本和图像,请使用 gemini-pro-vision 模型。

$result = Gemini::geminiProVision()
 ->generateContent([
  'What is this picture?',
  new Blob(
   mimeType: MimeType::IMAGE_JPEG,
   data: base64_encode(
    file_get_contents('https://storage.googleapis.com/generativeai-downloads/images/scones.jpg')
   )
  )
 ]);
 
$result->text(); //  The picture shows a table with a white tablecloth. On the table are two cups of coffee, a bowl of blueberries, a silver spoon, and some flowers. There are also some blueberry scones on the table.

多轮对话(聊天)

使用 Gemini,您可以在多个回合中构建自由形式的对话。

$chat = Gemini::chat()
 ->startChat(history: [
   Content::parse(part: 'The stories you write about what I have to say should be one line. Is that clear?'),
   Content::parse(part: 'Yes, I understand. The stories I write about your input should be one line long.', role: Role::MODEL)
 ]);

$response = $chat->sendMessage('Create a story set in a quiet village in 1600s France');
echo $response->text(); // Amidst rolling hills and winding cobblestone streets, the tranquil village of Beausoleil whispered tales of love, intrigue, and the magic of everyday life in 17th century France.

$response = $chat->sendMessage('Rewrite the same story in 1600s England');
echo $response->text(); // In the heart of England's lush countryside, amidst emerald fields and thatched-roof cottages, the village of Willowbrook unfolded a tapestry of love, mystery, and the enchantment of ordinary days in the 17th century.

gemini-pro-vision 模型(用于文本和图像输入)尚未针对多回合对话进行优化。请确保对于聊天用例使用 gemini-pro 和纯文本输入。

流式生成内容

默认情况下,模型在完成整个生成过程后返回响应。您可以通过不等待整个结果,而是使用流来处理部分结果,以实现更快的交互。

$stream = Gemini::geminiPro()
 ->streamGenerateContent('Write long a story about a magic backpack.');

foreach ($stream as $response) {
 echo $response->text();
}

计数令牌

在发送任何内容到模型之前,对于长提示,计算令牌可能很有用。

$response = Gemini::geminiPro()
 ->countTokens('Write a story about a magic backpack.');

echo $response->totalTokens; // 9

配置

您发送给模型的每个提示都包含控制模型如何生成响应的参数值。对于不同的参数值,模型可以生成不同的结果。有关 模型参数 的更多信息。

此外,您还可以使用安全设置来调整获取可能被认为有害的响应的可能性。默认情况下,安全设置阻止具有中等和/或高度可能被视为不安全内容的所有维度的所有内容。有关 安全设置 的更多信息。

use Gemini\Data\GenerationConfig;
use Gemini\Enums\HarmBlockThreshold;
use Gemini\Data\SafetySetting;
use Gemini\Enums\HarmCategory;

$safetySettingDangerousContent = new SafetySetting(
    category: HarmCategory::HARM_CATEGORY_DANGEROUS_CONTENT,
    threshold: HarmBlockThreshold::BLOCK_ONLY_HIGH
);

$safetySettingHateSpeech = new SafetySetting(
    category: HarmCategory::HARM_CATEGORY_HATE_SPEECH,
    threshold: HarmBlockThreshold::BLOCK_ONLY_HIGH
);

$generationConfig = new GenerationConfig(
    stopSequences: [
        'Title',
    ],
    maxOutputTokens: 800,
    temperature: 1,
    topP: 0.8,
    topK: 10
);

$generativeModel = Gemini::geminiPro()
 ->withSafetySetting($safetySettingDangerousContent)
 ->withSafetySetting($safetySettingHateSpeech)
 ->withGenerationConfig($generationConfig)
 ->generateContent("Write a story about a magic backpack.");

嵌入资源

嵌入是将信息表示为数组中浮点数字列表的技术。使用 Gemini,您可以将文本(单词、句子和文本块)表示为矢量化形式,使其更容易比较和对比嵌入。例如,具有类似主题或情感的两个文本应具有类似的嵌入,这可以通过诸如余弦相似度之类的数学比较技术来识别。

使用embedding-001模型,可以选择embedContentsbatchEmbedContents

$response = Gemini::embeddingModel()
 ->embedContent("Write a story about a magic backpack.");

print_r($response->embedding->values);
//[
//    [0] => 0.008624583
//    [1] => -0.030451821
//    [2] => -0.042496547
//    [3] => -0.029230341
//    [4] => 0.05486475
//    [5] => 0.006694871
//    [6] => 0.004025645
//    [7] => -0.007294857
//    [8] => 0.0057651913
//    ...
//]

模型

列出模型

使用列表模型查看可用的Gemini模型。

$response = Gemini::models()->list();

$response->models;
//[
//    [0] => Gemini\Data\Model Object
//        (
//            [name] => models/gemini-pro
//            [version] => 001
//            [displayName] => Gemini Pro
//            [description] => The best model for scaling across a wide range of tasks
//            ...
//        )
//    [1] => Gemini\Data\Model Object
//        (
//            [name] => models/gemini-pro-vision
//            [version] => 001
//            [displayName] => Gemini Pro Vision
//            [description] => The best image understanding model to handle a broad range of applications
//            ...
//        )
//    [2] => Gemini\Data\Model Object
//        (
//            [name] => models/embedding-001
//            [version] => 001
//            [displayName] => Embedding 001
//            [description] => Obtain a distributed representation of a text.
//            ...
//        )
//]

获取模型

获取有关模型的信息,例如版本、显示名称、输入令牌限制等。

$response = Gemini::models()->retrieve(ModelType::GEMINI_PRO);

$response->model;
//Gemini\Data\Model Object
//(
//    [name] => models/gemini-pro
//    [version] => 001
//    [displayName] => Gemini Pro
//    [description] => The best model for scaling across a wide range of tasks
//    ...
//)

测试

该包提供了一个Gemini\Client类的伪实现,允许您模拟API响应。

为了测试您的代码,确保在测试用例中将Gemini\Client类与Gemini\Testing\ClientFake类进行交换。

在创建伪客户端时,按提供顺序返回伪响应。

所有响应都包含一个fake()方法,允许您通过仅提供与您的测试用例相关的参数来轻松创建响应对象。

use Gemini\Testing\ClientFake;
use Gemini\Responses\GenerativeModel\GenerateContentResponse;

Gemini::fake([
  GenerateContentResponse::fake([
    'candidates' => [
      [
        'content' => [
          'parts' => [
            [
              'text' => 'success',
            ],
          ],
        ],
      ],
    ],
  ]),
]);

$result = Gemini::geminiPro()->generateContent('test');

expect($result->text())->toBe('success');

在流式响应的情况下,您可以提供包含伪响应数据的资源作为可选参数。

use Gemini\Testing\ClientFake;
use Gemini\Responses\GenerativeModel\GenerateContentResponse;

Gemini::fake([
    GenerateContentResponse::fakeStream(),
]);

$result = Gemini::geminiPro()->streamGenerateContent('Hello');

expect($response->getIterator()->current())
    ->text()->toBe('In the bustling city of Aethelwood, where the cobblestone streets whispered');

在请求发送后,有多种方法可以确保发送了预期的请求。

// assert list models request was sent
Gemini::models()->assertSent(callback: function ($method) {
    return $method === 'list';
});
// or
Gemini::assertSent(resource: Models::class, callback: function ($method) {
    return $method === 'list';
});

Gemini::geminiPro()->assertSent(function (string $method, array $parameters) {
    return $method === 'generateContent' &&
        $parameters[0] === 'Hello';
});
// or
Gemini::assertSent(resource: GenerativeModel::class, model: ModelType::GEMINI_PRO, callback: function (string $method, array $parameters) {
    return $method === 'generateContent' &&
        $parameters[0] === 'Hello';
});


// assert 2 generative model requests were sent
Gemini::assertSent(resource: GenerativeModel::class, model: ModelType::GEMINI_PRO, callback: 2);
// or
Gemini::geminiPro()->assertSent(2);

// assert no generative model requests were sent
Gemini::assertNotSent(resource: GenerativeModel::class, model: ModelType::GEMINI_PRO);
// or
Gemini::geminiPro()->assertNotSent();

// assert no requests were sent
Gemini::assertNothingSent();

要编写预期API请求失败的测试,您可以将Throwable对象作为响应提供。

Gemini::fake([
    new ErrorException([
        'message' => 'The model `gemini-basic` does not exist',
        'status' => 'INVALID_ARGUMENT',
        'code' => 400,
    ]),
]);

// the `ErrorException` will be thrown
Gemini::geminiPro()->generateContent('test');